

Система мониторинга силового кабеля напряжением 10кВ

Разработка Группы компаний «Москабельмет»

Какова основная причина выхода из строя силового кабеля?

По данным МЧС России, по причине нарушения правил устройства и эксплуатации электрооборудования происходит каждый четвёртый пожар в стране

111 пожаров в день 11 млрд рублей ущерба % - всех пожаров в стране

Достоинства сенсоров на основе оптоволокна:

В качестве сенсора нами используется стандартное оптоволокно (телекоммуникационное), используемое для собственного производства (что экономически эффективно);

Малый вес;

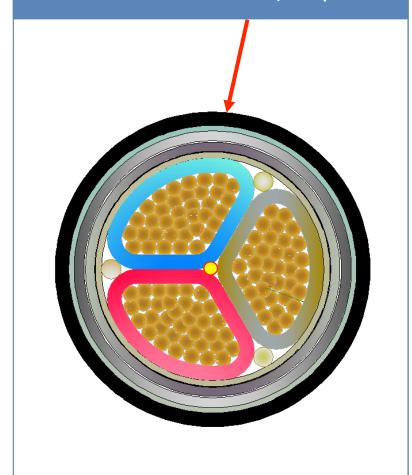
Чрезвычайно малые размеры, что позволяет устанавливать их в ранее недоступные пространственно ограниченные места. Например в центральную часть кабеля с БПИ;

Сенсоры эффективны на больших расстояниях благодаря слабому затуханию оптического сигнала;

Абсолютно не чувствительны к электромагнитным помехам;

Не восприимчивы к ударам / вибрации / химическим воздействиям;

Не имеют ни электронных компонентов, ни каких-либо движущихся частей в зоне контроля;



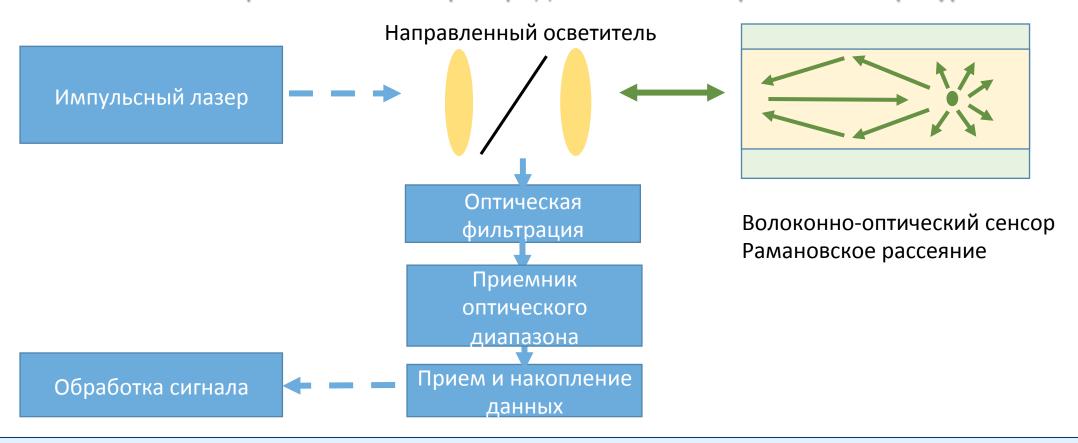
Расположив оптоволоконный сенсор внутри силового кабеля, можно отслеживать тепловое воздействие с наибольшей точностью.

Система мониторинга позволяет решить три основных проблемных вопроса эксплуатации подземных кабелей с БПИ, которые в значительной степени определяют срок службы кабеля:

- 1. превышал ли кабель свою номинальную рабочую температуру; если да то, как долго и в каком месте;
- 2. превышал ли кабель свою максимально допустимую температуру; если да то как долго и в каком месте;
- 3. предсказывать допустимую электрическую нагрузку на кабель, в случае, если температура кабеля достигает своей максимальной расчётной температуры.

Технологическое решение. Оптоволокно в центре

Актуальность для потребителей


ΑΑΓ	АСБ2л	ЦААШнг	ЦАСБлШв	СБл
ААШв	АСБ2лГ	ЦААБлГ	ЦАСБнлШнг	СБ2л
ААШнг	АСБГ	ЦААБнлГ	ЦАСБВнг(А)-	СБ2лГ
ААБлГ	АСБШв	ЦААБл	LS	СБГ
ААБнлГ	АСБлШв	ЦААБ2л	ЦСШв	СБШв
ААБл	АСБ2лШв	ЦАСШв	ЦСБШв	СБлШв
ААБ2л	АСБнлШнг	ЦАСБ	ЦСБ	СБ2лШв
ААБ2лШв	АСБВнг(А)-Ц	SЦАСБл	ЦСБл	СБнлШнг
ACF	СГ	ЦАСБ2л	ЦСБ2л	СБВнг(А)-LS
АСШв	СШв	ЦАСБГ	ЦСБГ	СБВнг(A)-FRLS-60
АСБ	СБ	ЦАСБШв	ЦСБлШв	ЦСБПнг(A)-HF
АСБл	ЦААШв		ЦСБнлШнг	ЦСБВнг(А)-
			ЦСБВнг(A)-LS	FRLS-60

Потенциальные заказчики Московский Московский Метрополитен Транспорт РОССИЙСКОЙ ФЕДЕРАЦИИ

маркоразмеров: 3х150, 3х185 и 3х240

на напряжение: 10 кВ

Сенсоры как системы распределенного измерения температуры

Благодаря применению системы распределенного измерения температуры возможно следующее:

- мониторинг температуры кабеля вдоль всей длины кабельной линии;
 - расчет на основании полученных данных допустимой пропускной способности кабельной линии;
 - определение мест перегрева;
 - управление кабельной линией на основе данных контроля.

Заключение

Для кабелей с БПИ номинальная рабочая температура кабеля составляет 70 °C, при повышение данной температуры происходит старение изоляции, что может привести к уменьшение срока службы кабеля.

Оптоволоконный сенсор встроенный в центральную часть силового кабеля с БПИ оперативно отреагирует на изменения температурного режима работы, так как находится в непосредственной близости с токопроводящей жилой.

Опытный образец успешно прошел технологию выдержки в синтетическом нестекающем составе при температуре 130 - 150 °C, при этом затухание многомодового волокна не превысило 0.7 дБ/км, что соответствует норме.

Многомодовые волокна в данной конструкции силового кабеля с БПИ позволяют осуществлять мониторинг кабельной линии протяженностью до 10 км.

Система мониторинга, разработанная Группой компаний «Москабельмет», определяет место аварии в <u>пределах ОДНОГО МЕТРА</u>.

Надежный поставщик кабельной продукции, проверенной временем

Группа компаний МОСКАБЕЛЬМЕТ

11024, Москва, ул. 2-ая Кабельная, д. 2 +7 (495) 777 75 00