Ученые Росатома создали уникальный испытательный стенд для отработки технологии получения низкоуглеродного водорода из природного газа

Завершены автономные испытания, подтверждена готовность стенда к проведению исследований и начата реализация программы экспериментальных работ.

На площадке Протвинского филиала НИИ НПО «ЛУЧ» (входит в Научный дивизион госкорпорации «Росатом») завершено создание блочно-модульного испытательного стенда для отработки технологии производства низкоуглеродного водорода и водородсодержащих смесей с использованием тепла высокотемпературного газоохлаждаемого реактора (ВТГР). В разработке и создании стенда принимали участие специалисты ЦКБМ (входит в Машиностроительный дивизион Госкорпорации «Росатом») и сотрудники Санкт-Петербургского политехнического университета Петра Великого (СПбПУ, входит в Консорциум опорных вузов «Росатома»). Работы проводятся по заказу Электроэнергетического дивизиона «Росатома» в рамках инвестиционного проекта по созданию отечественных технологий для крупномасштабного производства и потребления водорода и водородсодержащих продуктов.

В составе стенда (производительностью по водороду 150 Нм3/ч с чистотой не менее 99,99 %) смонтированы отдельные блок-модули для отработки всех технологических стадий: подготовки компримированного природного газа, сероочистки, парового и парокислородного риформинга, среднетемпературной и низкотемпературной конверсии монооксида углерода, аминовой очистки и выделения водорода из водородсодержащей смеси. При создании стенда российские специалисты разработали уникальное оборудование, которое позволит проводить исследования нестационарных процессов, испытания катализаторов и сорбентов, изучать процессы теплообмена, газодинамики и горения.

Специалисты «Росатома» сформировали и начали реализацию программы экспериментальных работ на созданном стенде, рассчитанную на 2024–2025 гг. Результаты проводимых исследований будут использованы при валидации расчетных моделей, создании «цифровых двойников» и проектировании промышленных аппаратов химико-технологической части атомной энерготехнологической станции и крупнотоннажных установок получения синтез-газа, водорода, метанола и аммиака.

«Появление в России такого уникального стенда делает возможным не только отработку технических решений химико-технологической части атомной энерготехнологической станции с реактором ВТГР, но и позволяет организовать на его основе научно-испытательный центр для испытания в пилотном и опытно-промышленном масштабе и подтверждения показателей технологий переработки синтез-газа, выделения диоксида углерода, очистки и использования водорода. Наличие такого стенда существенно расширяет возможности «Росатома» по освоению соответствующих технологий, дает возможность разработчикам со всей страны на взаимовыгодной основе проводить испытания и отработку соответствующих процессов и катализаторов и служит обязательным условием для достижения технологической независимости нашей страны как в области водородных технологий, так и производства газохимической продукции с использованием низкоуглеродного атомного тепла», — подчеркнул научный руководитель по химико-технологической части АЭТС, научный консультант генерального директора АО «Концерн Росэнергоатом», член-корреспондент РАН Антон Максимов.

Разработанная специалистами Протвинского филиала АО «НИИ НПО «ЛУЧ» технологическая схема производства низкоуглеродного аммиака (как наиболее перспективного на мировом рынке водородсодержащего продукта) единичной производительностью технологической цепочки 2 500 тонн/сутки оптимизирована для использования в химико-технологической части (ХТЧ) высокопотенциального тепла, производимого высокотемпературным газоохлаждаемым реактором (единичной тепловой мощностью 200 МВт) в составе атомной энерготехнологической станции (АЭТС с ВТГР) или внешнего энергоисточника. Отличительной особенностью разработанной технологии производства низкоуглеродного аммиака с использованием тепла реактора ВТГР является применение современного оборудования (трубчатого конвективного риформера с реакционными трубами с рекуперацией тепла от автотермического риформинга, использование реакторов стабилизации и адиабатического риформинга), а также сниженные энергозатраты на выделение углекислоты и водорода.

 


Водородная энергетика — одно из приоритетных направлений научно-технологического развития «Росатома». Госкорпорация — один из технологических лидеров мировой экономики, поддерживает глобальную экологическую повестку перехода на низкоуглеродные технологии и реализует стратегическую программу по развитию водородной энергетики в России, которая включает развитие собственных технологических компетенций на всей цепочке поставок водорода и водородосодержащих продуктов, начиная от перспективных методов его производства, таких как электролиз, и заканчивая хранением и транспортировкой до локальных и зарубежных потребителей. Крупнейшие предприятия «Росатома» сегодня разрабатывают эффективные и конкурентоспособные на международном уровне решения в этой области, в том числе новые передовые электролизные системы.

Электроэнергетический дивизион Госкорпорации «Росатом» (АО «Концерн Росэнергоатом») с 2021 года реализует масштабный инвестиционный проект по разработке технологий водородной энергетики для крупномасштабного производства и потребления водорода и водородосодержащих продуктов. В рамках комплексного проекта ведется разработка технологических решений для создания атомной энерготехнологической станции (АЭТС) с высокотемпературным газоохлаждаемым реактором (ВТГР) и химико-технологической частью (ХТЧ) для производства водородсодержащих продуктов и аммиака (включая разработку технологии производства топлива ВТГР и технологии конверсии метана), разработка линейки высокоэффективных электролизных установок, топливных элементов, систем хранения и транспортировки водорода, а также проводятся исследования по системному обеспечению функционирования и безопасности водородной энергетики.

Работа Научного дивизиона Госкорпорации «Росатом» связана с инновационным развитием и технологическим лидерством Госкорпорации. Среди его основных задач до 2030 года — увеличение конкурентоспособности российской продукции и услуг на атомном энергетическом рынке и в сфере радиационных проектов за счет развития технологий и модернизации инфраструктуры, повышение эффективности проводимых исследований и разработок, активная коммерциализация научных результатов. Управляющая компания Научного дивизиона — АО «Росатом Наука» — координирует деятельность десяти научных институтов и центров, которые проводят исследования в области ядерной физики, физики плазмы и лазеров, водородной энергетики, ядерной медицины, новых материалов, адаптивной оптики, газо-, гидро- и термодинамики, радиохимии и многих других.

АО «НИИ НПО «ЛУЧ» (Акционерное общество «Научно-исследовательский институт Научно-производственное объединение «ЛУЧ») решает задачи по разработке и обеспечению атомной промышленности тепловыделяющими элементами и сборками для ядерных энергетических установок, а также создает топливные композиции для твэлов нового поколения. АО «НИИ НПО «ЛУЧ» является уникальным комплексом современных технологий на основе монокристаллических и высокотемпературных материалов. Ключевыми технологиями являются: изготовление плотного ядерного топлива, производство керамического ядерного топлива, электровакуумных приборов и источников тока, лазерной крупногабаритной оптики и адаптивных оптических систем; переработка необлученных ядерных материалов; создание контрольно-измерительных приборов для ядерных установок (термометров сопротивления, термопар, расходомеров, уровнемеров и др.); создание установок получения водорода для «зеленой» энергетики; создание топлива для перспективных реакторных установок (ВТГР, АСММ, ВВЭР-СКД).

Инновационные технологии Госкорпорации «Росатом» основаны на передовых достижениях российской атомной науки. Четкое взаимодействие промышленных предприятий с научно-исследовательскими институтами помогает укреплять технологический суверенитет страны, повышать конкурентоспособность отечественной атомной отрасли.

Центральное конструкторское бюро машиностроения (ЦКБМ) располагает многопрофильным конструкторским коллективом, собственной исследовательской, экспериментальной и производственной базой. Является разработчиком и изготовителем главных циркуляционных насосов для реакторов ВВЭР, проектирует и производит герметичные, консольные, питательные и аварийные насосы для атомных станций, а также широкий спектр дистанционно управляемого оборудования для работы с радиоактивными материалами, предлагает новые технологические решения в различных областях промышленности. Входит в Машиностроительный дивизион «Росатома».

Санкт-Петербургский политехнический университет Петра Великого (СПбПУ) - один из лидеров инженерно-технического образования. Входит в Консорциум опорных вузов Госкорпорации «Росатом». В Институте машиностроения, материалов и транспорта университета действуют четыре высшие школы, за плечами которых многолетний опыт работы в области исследования и проектирования новых изделий, разработка технологий и создание новых образовательных программ. На сегодняшний день высшие школы располагают передовым оборудованием и хорошо оснащенными лабораториями, которые позволяют сделать подготовку будущих специалистов максимально эффективной.

Передовая инженерная школа Санкт-Петербургского политехнического университета Петра Великого была создана для решения актуальных инженерных задач предприятий высокотехнологичной промышленности России и развития нового типа инженерной подготовки за счет цифровой трансформации образовательных подходов и технологий. При поддержке ЦКБМ в Передовой инженерной школе СПбПУ организована новая программа магистратуры «Цифровой инжиниринг основного технологического оборудования водородных технологий и энергетических систем нового поколения» и ведутся работы по созданию лаборатории по изучению химических технологий для проектов в области водородной энергетики с применением цифровых решений.

Праздник к нам приходит: в Пермском Политехе рассказали, как правильно выбрать безопасную гирлянду
Сложно представить декабрь без ярких огней гирлянд. Ими украшают новогодние елки, дома и квартиры, витрины в магазинах и улицы городов. Эксперты Пермского Политеха рассказали, как выбрать безопасную и энергосберегающую гирлянду, почему лучше не размещать ее на штору, зачем нужна отметка EAC и что она значит, как праздничное украшение может привести к аллергическим реакциям, головным болям и ухудше...
Пленки из параллельно лежащих нанотрубок повысили эффективность лазеров ультракоротких импульсов на 30%
Ученые разработали простой и недорогой способ самосборки углеродных нанотрубок, который позволяет ориентировать их в одном направлении. Пленки на основе упорядоченных нанотрубок могут использоваться в лазерах, генерирующих ультракороткие световые импульсы. Такие лазеры применяют в биологии и медицине для создания изображений тканей и органов с высоким разрешением при диагностике заболеваний. Парал...
В МЭИ прошел первый всероссийский научно-практический форум «Энергия знаний: дополнительное профессиональное образование в сфере энергетики»
12 декабря 2024 года в НИУ «МЭИ» прошел первый всероссийский научно-практический форум «Энергия знаний: дополнительное профессиональное образование в сфере энергетики». Эксперты института дистанционного и дополнительного образования НИУ «МЭИ» презентовали новые уникальные программы обучения и различные инновационные образовательные решения для дополнительного...
Учёные Университета МИСИС создали термоэлектрический материал для зеленой энергетики
Исследователи разработали новый подход к созданию термоэлектрических материалов, которые в перспективе могут быть использованы для преобразования промышленного тепла в электричество. Предложенный метод одновременно повышает энергоэффективность производственных процессов и минимизирует воздействие на окружающую среду. Промышленное отработанное тепло, выделяемое на п...
Российские учёные разработали технологию производства теплостойких термопластов для импортозамещения в электротехнике и приборостроении
Российские ученые разработали новый способ получения термопластов. Благодаря этому методу создаются полимеры с повышенной теплостойкостью. Разработка поможет с импортозамещением иностранных материалов в первую очередь в сфере электротехники и приборостроения. Сейчас термопласты выпускаются только за рубежом, поэтому эксперты сошлись во мнении, что их разработка и развитие методов их синтеза значит...
Студенты НИУ «МЭИ» — призеры Осеннего кубка CASE-IN
9 декабря 2024 года в кластере «Ломоносов» состоялся финал Осеннего кубка Международного инженерного чемпионата CASE-IN, который объединил талантливых студентов и школьников, готовых представить эффективные решения для развития ведущих отраслей России. В рамках Осеннего кубка команда НИУ «МЭИ» «Эпоха резонанса» заняла второе место. Участники по заданию АЛРОСА...
Ученые синтезировали и описали управляемый магнитный материал для высокоточной электроники
Ученые синтезировали высокочувствительные магнитные материалы на основе арсенида кадмия с вкраплениями хрома и описали их микроструктуру. Такие материалы полезны при разработке устройств магнитной памяти, средств связи, сенсоров и микроэлектроники нового поколения. Поэтому знания об их строении позволят точно настраивать магнитные свойства в зависимости от задач, которые должен будет выполнять мат...
Ученые НГТУ НЭТИ разработали прогнозные модели для управления ремонтами электрооборудования
В Новосибирском государственном техническом университете НЭТИ разработали прогнозные модели, которые позволяют спланировать ремонт электрооборудования в соответствии с динамикой развития дефектов (ремонт по фактической прогнозируемой наработке на опасный дефект).   «Реально существующая ситуация на объектах электроэнергетики нефтяной отрасли такова: служба диагностики имеет ко...
В МЭИ разработали цифровой двойник энергетического котла
В рамках сотрудничества НИУ «МЭИ», Минэнерго России и объединённой электроэнергетической компанией «Union Electrica» (UNE) Республики Куба разработан цифровой двойник энергетического котла для ТЭС «Карлос Мануэль Сеспедес». Создаваемые в МЭИ цифровые двойники позволяют решать различные производственные задачи по обеспечению эффективной работы, сжиганию непрое...
ЛЭТИ и ГК «Элемент» запустили дизайн-центр по проектированию и измерению параметров силовых электронных приборов и материалов
Новое подразделение займется отработкой технологий производства и контроля качества промышленных электронных компонентов и материалов на базе уникального измерительного оборудования. Одна из ключевых задач, которую СПбГЭТУ «ЛЭТИ» совместно с индустриальными партнерами решает в рамках программы развития «Приоритет 2030» – разработка и внедрение в промышленность ново...
Ученые СГТУ разработали технологию повышения прочности материалов для условий Крайнего Севера
Ученые Института машиностроения, материаловедения и транспорта Саратовского государственного технического университета имени Гагарина Ю.А. создали новую технологию для улучшения качества композиционных материалов, которые могут быть использованы в условиях сурового климата Арктики, в частности, при производстве морских ледостойких платформ, трубопроводов, резервуаров для хранения технических жидко...
Ученым КФУ удалось смоделировать новый перспективный материал – нанокомпозит
Он найдет свое применение в создании сенсоров, оптоэлектронных приборов, энергоэффективных устройств и каталитических систем. Нанотехнологии открыли новую эру материаловедения, предоставив возможности для разработки многофункциональных нанокомпозитных материалов. Ученые Института физики Казанского федерального университета смоделировали и изучили новый материал – нанокомпозит. Он состоит...
В МЭИ разработали экспериментальный образец источника излучения в экстремальном ультрафиолете
Учёные НИУ «МЭИ» разработали экспериментальный образец источника излучения в экстремальном ультрафиолетовом диапазоне длин волн (ЭУФ). Эксперименты с добавлением лития в гелиевый плазменный разряд показали возможность создания стационарного источника, востребованного технологией ЭУФ литографии, которая применяется в микроэлектронике для уменьшения характерных размеров элементов схем...
Отходы угольных электростанций удешевят производство глинозема
Ученые разработали технологию получения глинозема из угольной золы — побочного продукта работы угольных электростанций. Поскольку глинозем нужен при производстве алюминия, предложенный подход удешевит получение этого металла, а также позволит утилизировать образующиеся в огромных количествах отходы. Полученный авторами глинозем соответствует стандартам качества, установленным в России, Китае...
Ученые НГТУ НЭТИ разработали отечественные антенны для GPS и ГЛОНАСС
Семейство отечественных антенн для работы с сигналами систем спутниковой навигации GPS и ГЛОНАСС частотных диапазонов L1 и L2 разработала команда ученых Новосибирского государственного технического университета НЭТИ в рамках программы «Приоритет 2030». Конструкторская документация на семейство новых антенн для спутниковой навигации будет передана индустриальному партнеру, а в дальне...
Медь улучшила катализатор для переработки парниковых газов
Ученые разработали стабильный катализатор на основе никеля с примесью меди, который с 95% эффективностью превращает этанол в синтез-газ, используемый в химическом производстве, тепловой и электроэнергетике. Поскольку этанол удается получать из углекислого газа, эта реакция может использоваться для утилизации парниковых газов из воздуха. Таким образом, полученный катализатор потенциально поможет бо...
До конца года в России будут созданы ключевые компоненты в сфере квантовых коммуникаций
Об этом сообщил замглавы РЖД Евгений Чаркин на пленарной сессии IV Конгресса молодых ученых, который проходит на федеральной территории «Сириус». — Развитие направления «Квантовые коммуникации», за которое отвечает РЖД, — пример эффективного экосистемного подхода при кооперации науки, бизнеса и образования. Наш реестр экосистемы уже включает более 140 орган...
Графен упростит получение чистой воды
Ученые впервые показали, что под действием слабого солнечного света жидкости, содержащие графеновые нанохлопья, испаряются на 95% быстрее, чем дистиллированная вода. Кроме того, графеновые наножидкости преобразуют солнечную энергию в тепловую на 48% эффективнее. Благодаря таким свойствам на основе графеновых хлопьев можно создавать эффективные системы опреснения и получения чистой воды из разных и...
Разработки ТГУ и ИЯФ СО РАН помогут заместить импортные детекторы
Создание отечественной электроники входит в число приоритетных задач, решение которых критически важно для страны. В настоящее время ученые Томского государственного университета работают над расширением номенклатуры отечественных сенсоров. Помимо многоэлементных сенсоров на основе арсенида галлия, созданы опытные образцы кремниевых микрополосковых сенсоров, которые также будут использоваться в ро...
Ученые разработали технологию получения медных супер-концентратов
Специалистам лаборатории перспективных технологий комплексной переработки минерального и техногенного сырья цветных и черных металлов УрФУ удалось увеличить содержание меди в халькопиритном концентрате в 1,5–2,2 раза (до 35–55 %). Таким образом, благодаря работе ученых промышленники могут получать супер-концентраты. Это очень значимый результат, так как об...